Extra tutorial : Selected problems of Assignment 13

Leon Li
13
13 Leon Li

 $23/4/2018$

Recall the notion of radius of convergence:
\nDef: Given a power series
$$
f(x) = \sum_{n=0}^{\infty} a_n (x-x_0)^n
$$

\nlet $\rho := \lim_{n \to \infty} |a_n|^{\frac{1}{n}} \in [0, \tan]$ the radius of convergence is defined as
\n $R := \begin{cases} 0 & \rho = +\infty \\ \frac{1}{\rho} & 0 \le \rho \le +\infty \end{cases}$
\nThe following theorem justifies the name "radius of convergence"
\n $\frac{1}{\pi}$
\nWith notations as above, we have the following cases:
\na) $R = 0$: $f(x)$ diverges on $\mathbb{R}\setminus \{x_0\}$
\nb) $0 \le R \le +\infty$: $f(x)$ converges uniformly on every $[a,b] \le (x_-,x_0+1)$
\nand diverges on $|x-x_0| > R$
\nc) $R = +\infty$: $f(x)$ converges uniformly on every $[a,b] \le R$
\nc) $R = +\infty$: $f(x)$ converges uniformly on every $[a,b] \le R$

In Q1, Q2, let $f(x) = \sum_{n=0}^{\infty} \alpha_n x^n$ (*i.e.* $x_0 = 0$) Q_1) ($89.4Q5$) (a) Suppose $L = \lim_{n \to \infty} |\frac{a_n}{a_{n+1}}|$ exists in [0, too], show that $R = L$. (b) Give an example which f has R>O, but L does not exist in $[0,+\infty]$ $Sol:(a)$ for each $x \in \mathbb{R}$, let $\lambda(x) := \lim_{n \to \infty} |\frac{a_{n+1}x^{n+1}}{a_n x^n}| = \lim_{n \to \infty} |\frac{a_{n+1}}{a_n}| \cdot |x| = \frac{|x|}{L}$ Case 1: $2 = 0$: then, for all $x \neq 0$, $\lambda(x) = \infty$. By ratio test, $f(x)$ diveroyes on R\fo}. \therefore By C \cdot H Thm, R=0=L $Case 2: O < L < +\infty:$ then for all x with $|X| < L$, $\lambda(x) < 1$ Sy ratio test, f(x) converges absolutely. On the other hand, for all x with $|x| \geq L$, $\lambda(x) \geq l$: By ratio test, f(x) diverges. : By C.H Thm, R=L.

Case 3:
$$
L = \infty
$$
 than for all $x \in \mathbb{R}$, $\lambda(x) = 0$

\n.. By ratio test, $f(x)$ converges absolutely.

\n.. By C·H Thm, $R = \infty = L$.

\n(b) Congider $f(x) = 1 + x^2 + x^4 + \cdots$, *z.e.*

\n $Q_n = \begin{cases} 1 & \text{if } n \text{ is even} \\ 0 & \text{if } n \text{ is odd.} \end{cases}$

\nThen $\rho = \lim_{n \to \infty} |\alpha_n|^{\frac{1}{n}} = 1$, $\therefore R = 1$ is positive.

\nHowever, as $\alpha_n = 0$ when $n \text{ is odd, } L$ does not exist in \overline{L}_0 and \overline{L}_1 .

Q2) (§9.4 Q6a,6c) Determine R when (a) $\alpha_n = \frac{1}{n^k}$ (b) $\alpha_n = \frac{n^k}{n!}$ $S_{bl}: (a)$ $\rho = \lim_{n \to \infty} |a_n|^{\frac{1}{n}} = \lim_{n \to \infty} \frac{1}{n} = 0$. $\therefore R = \infty$ (b) Try to compute $L = \lim_{n} |\frac{\alpha_n}{\alpha_{n+1}}|$: $\left|\frac{a_n}{a_{n+1}}\right| = \frac{\frac{h^n}{h!}}{\frac{(n+1)^{n+1}}{(n+1)!}} = \left(\frac{h}{h+1}\right)^n \ge \left(\frac{1}{\left(\frac{n+1}{h}\right)}\right)^n = \frac{1}{\left(|+\frac{1}{h}\right)^n}$ $\therefore L = \lim_{n} \frac{1}{(1+n)^n} = \frac{1}{e}$ \therefore By (Qla), $R = L = \frac{1}{e}$.

 $(33)(59.4811)$ Let $f: (-r,r) \rightarrow \mathbb{R}$ be a smooth fination such that $\exists B>0$, $\forall n \in \mathbb{N}$, $\|\uparrow^{(n)}\|_{\infty} \leq B$. Show that $\sum_{n=1}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$ converges uniformly to $f(x)$ on $(-r, r)$ $\overrightarrow{S_{0}}$: $\overrightarrow{S_{1nce}}$ $\frac{lim}{k} \frac{Y^{k+1}}{1^{k+1}-1} = O$ (by applying n^{th} term test to $\sum_{k=0}^{\infty} \frac{Y^{k+1}}{k+1}$) Given ϵ >0, there exists $K \in \mathbb{N}$ such that for any $k \geq k$ $\frac{V^{(4)}}{(k+1)!} < \frac{E}{B}$ then for any $x \in (-r.r)$, for any $k \ge k$, by Taylor's Thm on f with $x_0=0$, then exists c with $0 < |c| < |x|$ suh that $f(x) = \sum_{n=1}^{k} f^{(n)}(0) x^n + \frac{f^{(k+1)}(c)}{(k+1)!} x^{k+1}$ $f(x) - \sum_{n=n}^{k} \frac{f^{(k)}(0)}{n!} x^n = \left| \frac{f^{(k+1)}(c)}{(k+1)!} x^{k+1} \right| \leq \frac{B}{(k+1)!} r^{k+1} < \epsilon$ $\frac{1}{x}$ $\sum_{n=1}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$ converges uniformly to f on $(-r, r)$

Q4) (Supp. Er. 1)
\nLet
$$
f(x) = \sum_{n=0}^{\infty} \alpha_n x^n
$$
 be a power series at 0 with $R(f) > 0$.
\n(a) Show that for each $k \in N \cup \{0\}$, $Q_k = \frac{f^{(k)}(0)}{k!}$
\n(b) If $g(x) = \sum_{n=0}^{\infty} b_n x^{k}$ is another power series at 0 with $R(g) > 0$
\nso that the exists $r > 0$ such that $f = g$ on $l-r,r$.)
\nshow that for all $k \in N \cup \{0\}$, $Q_k = b_k$.
\nSo: (a) For $k = 0$, substituting $x = 0$ gives $f(0) = Q_0$
\nFor $k > 0$, applying Differentiation Theorem k times,
\n $f^{(k)}(x) = \sum_{n=k}^{\infty} Q_n \cdot (n(n-1) \cdots (n-k+1)) x^{k-k}$ satisfies $R(f^{(k)}) = R(f)$
\n \therefore Substitute $x = 0$, $f^{(k)}(0) = Q_k \cdot k!$, $\therefore Q_k = \frac{f^{(k)}(0)}{k!}$
\n(b) For each $k \in N \cup \{0\}$, applying (a) to f and g gives
\n $Q_k = \frac{f^{(k)}(0)}{k!}$ and $b_k = \frac{g^{(k)}(0)}{k!}$. As $f = g$ on $(-r,r)$,
\n $f^{(k)}(0) = g^{(k)}(0)$, $\therefore Q_k = \frac{f^{(k)}(0)}{k!} = \frac{g^{(k)}(0)}{k!} = b_k$