Extra tutorial: Selected problems of Assignment 13

Leon Li

23/4/2018

Recall the notion of radius of convergence:
Def: Given a power series
$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
,
let $\rho := \lim_{n \to \infty} |a_n|^{\frac{1}{n}} \in Eo, +a_n^n|$ the radius of convergence is defined as
 $R := \begin{cases} 0 & \rho = +a_n^n \\ \frac{1}{n} & 0 < \rho < a_n^n \\ \frac{1}{n} & 0 <$

In Q1, Q2, let $f(x) = \sum_{n=0}^{\infty} \alpha_n x^n$ (i.e. $x_0=0$) (1)(99.405)(a) Suppose L:= line and exists in [0, to]. Show that R=L. (b) Give an example which f has R>O, but L does not exist in $[0, +\infty]$ So: (a) for each $x \in \mathbb{R}$, let $\mathcal{X}(x) := \lim_{n \to \infty} \left| \frac{a_{n+1} \times x^{n+1}}{a_n \times x^n} \right| = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \cdot |x| = \frac{|x|}{L}$ Case 1: L=0: then for all $x\neq 0$, $\lambda(x) = \infty$. .: By ratio test, f(x) diverges on 1R193. \therefore By C·H Thm, R=0=LCase 2: O<L<+00: then for all x with |X|<L. R(x)<1 ... By ratio test, f(x) converges absolutely. On the other hand, for all x with |X| > L, $\lambda(X) > I$. By ratio test, f(x) diverges. . By C.H. Thm. R=L.

Case 3:
$$L = \infty$$
 then for all $x \in \mathbb{R}$, $\lambda(x) = 0$
 \therefore By ratio test, $f(x)$ converges absolutely,
 \therefore By C·H Thm, $\mathbb{R} = \infty = L$.
(b) Consider $f(x) = 1 + x^2 + x^4 + \cdots$, *i.e.*
 $a_n = \begin{cases} 1, & \text{if } n & \text{is even} \\ 0, & \text{if } n & \text{is odd.} \end{cases}$
Then $P = \lim_{n \to \infty} |a_n|^{\frac{1}{n}} = 1$, $\therefore \mathbb{R} = 1$ is positive.
However, as $a_n = 0$ when n is odd, L does not exist in I_0 to I_1 .

Q2) (§9.4 Q6a, 6c) Determine R when
(a)
$$a_n = \frac{1}{n^n}$$
 (b) $a_n = \frac{n^n}{n!}$
Sol: (a) $\rho = \lim_{n} |a_n|^n = \lim_{n} \frac{1}{n} = 0$. $\therefore R = \infty$
(b) Try to compute $L = \lim_{n} |\frac{a_n}{a_{n+1}}|$:
 $\left|\frac{a_n}{a_{n+1}}\right| = \frac{n^n}{(n+1)^n} = \left(\frac{n}{(n+1)}\right)^n = \frac{1}{(1+\frac{1}{n})^n}$
 $\therefore L = \lim_{n} \frac{1}{(1+\frac{1}{n})^n} = \frac{1}{e}$
 $\therefore By (Q(a), R = L = \frac{1}{e}$.

Q3) (§9.4 Q11) Let $f: (-r, r) \rightarrow IR$ be a smooth function such that $\exists B>0$, $\forall n \in \mathbb{N}$, $\|f^{(n)}\|_{\infty} \leq B$. Show that $\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} x^n$ converges uniformly to f(x) on (-r, r)Sol: Since $\lim_{k \to 1} \frac{Y^{k+1}}{(k+1)!} = O(by applying nth term test to <math>\sum_{k=0}^{\infty} \frac{Y^{k+1}}{(k+1)!}$ Given 2>0, there exists KEIN such that for any k2K $\frac{V^{\text{RM}}}{(k+1)!} < \frac{\mathcal{E}}{\mathcal{B}}$ then for any XG (-r.r), for any kZK, by Taylor's Thm on f with xo=0, thus exists c with 0 < |c| < |x| such that $f(x) = \sum_{n=1}^{k} \frac{f^{(n)}(0)}{n!} x^n + \frac{f^{(k+1)}(c)}{(k+1)!} x^{k+1}$ $\frac{1}{2} \left(\int f(x) - \sum_{n=n}^{k} \frac{f^{(n)}(0)}{n!} x^{n} \right) = \left(\frac{1}{2} \int \frac{f^{(k+1)}(c)}{(k+1)!} x^{k+1} \right) \leq \frac{B}{(k+1)!} x^{k+1} < S$. 2 f⁽ⁿ⁾(0) xⁿ converges uniformly to f on (-r,r)

Q4) (Supp. Fx. 1)
Let
$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
 be a power series at 0 with $R(f) > 0$.
(a) Show that for each $k \in N \cup \{0\}$, $a_k = \frac{f^{(k)}(0)}{k!}$
(b) If $g(x) = \sum_{n=0}^{\infty} b_n x^n$ is another power series at 0 with $R[g] > 0$
So that there exists $r > 0$ such that $f = g$ on $(-r, r)$.
Show that for all $k \in N \cup \{0\}$, $a_k = b_k$.
So[: (a) For $k = 0$, substituting $x = 0$ gives $f(0) = a_0$
For $k > 0$, applying Differentiation Theorem k times,
 $f^{(k)}(x) = \sum_{n=k}^{\infty} a_n \cdot (n (n-1) \cdots (n-k+1)) x^{n+k}$ satisfies $R(f^{(k)}) = R(f)$
 \therefore Substituting $x = 0$, $f^{(k)}(0) = a_k \cdot k!$, $\therefore a_k = \frac{f^{(k)}(0)}{k!}$
(b) For each $k \in N \cup \{0\}$, applying (a) to found g gives
 $a_k = \frac{f^{(k)}(0)}{k!}$ and $b_k = \frac{g^{(k)}(0)}{k!} = \frac{g^{(k)}(0)}{k!} = b_k$